FROM THE PUBLISHER

IMPORTANT NOTICE

The material presented herein has been prepared for the general information of the reader and should not be used or relied upon for specific applications without first securing competent technical advice. Nor should it be used as a replacement for current complete engineering codes and standards. In fact, it is highly recommended that the appropriate current engineering codes and standards be reviewed in detail prior to any decision making.

While the material in this book was compiled with great effort and is believed to be technically correct, the authors, CASTI Publishing Inc. and its staff do not represent or warrant its suitability for any general or specific use and assume no liability or responsibility of any kind in connection with the information herein.

Nothing in this book shall be construed as a defense against any alleged infringement of letters of patents, copyright, or trademark, or as defense against liability for such infringement.
OUR MISSION

Our mission at CASTI Publishing Inc. is to provide industry and educational institutions with practical technical books at low cost. To do so, CASTI publications focus only on timely topics needed to solve current industry problems and are written by respected experts in their fields.

We would like to hear from you. Your comments and suggestions help us keep our commitment to the continuing quality of all our products.

All correspondence should be sent to the authors in care of:

CASTI Publishing Inc.,
10566 - 114 Street,
Edmonton, Alberta T5H 3J7
Canada

tel: (780) 424-2552, fax: (780) 421-1308
e-mail: casti@casti.ca
Internet web site: http://www.casti.ca

Preface

Cladding technology refers to the application of a relatively thin layer of an alloy (as the cladding) onto a substrate or backing material.

In many cases the cladding is selected for its resistance to corrosion. A wide range of alloys can be clad, including stainless steels and nickel base alloys to rare metals such as zirconium and tantalum.

The backing material is normally selected to meet the necessary mechanical requirements (strength and toughness). The backing material is often a grade of carbon or low alloy steel, other metals may be used.

A key feature of clad products is that the backing material is often significantly cheaper than the cladding alloy, so that clad products can offer substantial cost savings over the use of solid alloy products.

The authors have been personally involved in the use of corrosion-resistant alloy cladding of carbon steel for various applications in the oil and gas industry for more than 10 years. This experience prompted them to write this book covering wider aspects of clad products including the different means of manufacturing them, their properties, and their applications in various industries. The substantial use of clad pipe in the oil and gas sector merits particular mention, and so Chapter 9 of the book is devoted entirely to project experience in that industry.

The principal units of measurements used are metric with imperial conversions. Where appropriate, figures are expressed in nominal imperial units with actual size metric conversion.

Alloys are identified principally by UNS numbers and abbreviated terms are listed in the Appendix 1.

Liane Smith
Mario Celant
June 1998

CASTI Handbook of Cladding Technology – 2nd Edition
Table of Contents

1. Introduction to Cladding Technology
 Materials Selection Options for Corrosive Service 1
 Dimensions of Clad Products 3
 Economics of Clad Technology 4
 Optimising the Corrosion Properties 6
 Using Cladding Technology to Best Advantage 7

2. Clad Plate
 Production Methods 9
 Hot Roll Bonding 9
 Backing Steel Types 10
 Manufacturing Sequence 12
 Optimizing Bonding 16
 Heat Treatment 19
 Inspection Requirements 22
 Explosive Bonding 23
 Weld Overlaying 29

3. Clad Pipes
 Definitions 33
 Longitudinally Welded Clad Pipe 34
 Centricast Clad Pipe 38
 Seamless Pipe Mill Clad Pipe 43
 Explosively Bonded Clad Pipe 48
 Lined Pipe 50
 Thermo-Hydraulically Lined Pipe 51
 Hydraulically Lined Pipe 53
 Explosively Lined Pipe 55

4. Clad Bends
 Manufacturing of Bends from Clad Pipe 57
 Manufacturing of Bends from Lined Pipe 61

5. Clad Fittings
 Clad Fittings Made by Weld Overlaying 65
 Clad Fittings Made by Hot Isostatic Pressing 66
 Clad Fittings Made from Clad Plate or Pipe 69
 Clad Elbows 70
 Clad Tees 73
 Clad Manifolds 76
 Clad Reducers and Caps 77
 Clad Flanges and Valves 78
6. Specification Requirements of Clad Products
 Maximum Allowable Stress Values 81
 Cladding Alloy 82
 Backing Steel 83
 Backing Steel Requirements for Application in
 H₂S Containing Environments 84
 Mechanical Tests 85
 Corrosion Tests 87
 Demagnetising 90
 Dimensions and Tolerances of Clad Pipe 90
 Cladding and Wall Thickness 90
 Diameter and Out of Roundness 92
 Ultrasonic Inspection 93

7. Welding Clad Products
 Fabricating Clad Vessels 95
 Handling Clad Plate 95
 Welding Clad Vessels 96
 Circumferential Welding of Clad Pipe 100
 Handling Clad Pipe 101
 Pipe End Dimensions/Fit-up 101
 Weld Preparation 102
 Demagnetising of Pipes 105
 Back Shielding 106
 Choice of Welding Process 107
 Choice of Filler Metal 109
 Control of Heat Input 111
 Weld Integrity Assessment 112
 Welding Repairs During Pipelaying 112
 Developments in Clad Pipe Welding Technology 113
 Laying Clad Pipe 117
 Commissioning Clad Pipelines 121

8. Clad Product Applications
 Cladding Technology in the Oil & Gas Industry 123
 Clad Production Tubing 124
 Valves, Pumps, and Joints 127
 Vessels and Heat Exchangers 129
 Backing Steel 134
 Cladding Alloy 134
 Line Pipe and Manifolds 135
 Cladding Technology in the Petrochemical Industry 143
 Applications 143
 Backing Steel 146

CASTI Handbook of Cladding Technology – 2nd Edition
8. Clad Product Applications

Cladding Technology in the Petrochemical Industry (Continued)

Cladding Alloy
Disbonding in Hot Hydrogen 147
Cladding Technology in the Chemical Industry 148
Back ing Steel 149
Cladding Alloy 150
Cladding Technology in Chemical Tankers 153
Cladding Technology in Metal Purification 154
Cladding Technology in the Power Industry 154
Cladding Technology in Air Pollution Systems 158
Cladding Technology in Shipping Applications 163
Cladding Technology in the Pulp and Paper Industry 165

9. Clad Pipe Projects

ADMA OPCS - Um-Shaif - 1993 167
Agip UK - Thelma and South East Thelma - 1995 168
ARCO Alaska Inc. - Prudhoe Bay - 1991 170
ARCO - Thames Bacton - 1987 171
Asa mea Oil - Corridor - 1996 172
BP International Ltd. - Ravenspurn to Cleton - 1987 173
BP International Ltd. - Forties - 1987 174
BP International Ltd. - Miller - 1989 174
BP International Ltd. - Cyrus - 1995 176
Chevron - Ninian - 1992 180
Clyde Petroleum - P2/P6 - 1997 180
Louisiana Land and Exploration - Lost Cabin - 1991 182
Mobil - Arun Booster Gas Compression - 1993 182
Mobil - South L’ho Sukon - 1996 188
Mobil - Mobil 823 - 1995 188
Mobil - Yellowhammer - 1994 189
Mobil - 869 Field - 1995 190
Mobil - Ras Laffan LNG Co. Ltd. - North Field - 1998 192
Nederlandse Aardolie Maatschappij, NAM
- Early Field Trails - 1974-1975 192
Nederlandse Aardolie Maatschappij, NAM
- Roswinkel, Zuidlaren - 1978 193
Nederlandse Aardolie Maatschappij, NAM
- Emmer - 1987-1989 194
Nederlandse Aardolie Maatschappij, NAM
- Twente, Schoonebeek - 1988 196
Nederlandse Aardolie Maatschappij, NAM
- Dalen 6 And Dalen 9 - 1988 196
Nederlandse Aardolie Maatschappij, NAM
- Grijpskerk - 1996 197
9. Clad Pipe Projects (Continued)
 ONGC - South Bassein - (1988 and 1993) 198
 Shell Offshore - Fairway - 1991 204
 Shell Todd Oil Services - Maui 'B' to 'A' - 1991 208
 Pipe Production 209
 Laying the Line 210
 Welding 211
 Inspection 214
 Statoil - Åsgaard - 1997 214
 Texaco - Erskine - 1997 215
 Total Oil Marine - Bruce - 1991 216

Appendix 1 Abbreviated Terms 217

Appendix 2 Hardness Conversion Numbers 219

Appendix 3 Unit Conversions 229

Appendix 4 Pipe Dimensions 237

Appendix 5 Bibliography 243

Appendix 6 List of Figures and Contributors 253

Index 257