European Federation of Corrosion Publications

NUMBER 17 Second Edition

A Working Party Report on

Corrosion Resistant Alloys for Oil and Gas Production: Guidance on General Requirements and Test Methods for H₂S Service

MANEY
Published for the European Federation of Corrosion by Maney Publishing on behalf of The Institute of Materials
Contents

Series Introduction ix
Preface to the First Edition xii
Preface to the Second Edition xiii
1. Terminology and Definitions 1
 1.1 Generic and Oilfield Terms 1
 1.2 Definitions and Abbreviations 2
2. Standards Referred to in this Document 7
3. Introduction 9
4. Scope 11
5. Objective 13
6. Overview of Requirements for Selection and Qualification of CRAs for Oil and Gasfield Use 15
 6.1 Introduction 15
 6.2 Resistance to Corrosion by Produced Fluids 15
 6.2.1 Carbon Steels 15
 6.2.2 CRAs 15
 6.2.3 Testing CRAs for General and Localised Corrosion 16
 6.2.4 Testing CRAs for Resistance To Environmental Cracking 17
 6.3 Corrosion Resistance in Other Fluids 17
 6.4 Qualification and Ranking of CRAs 19
 6.5 Quality Assurance (QA), Quality Control (QC) Testing 19
7. General Principles and Limitations of Proposed SSC/SCC Tests 21
 7.1 Background 21
 7.2 Test Environments 21
 7.3 Test Stresses and Loading of Specimens 21
 7.4 Test Specimens 27
 7.5 Test Duration and Strain Rate 28
 7.6 Test Temperature 28
 7.7 Test Materials 29
Contents

Series Introduction ix

Preface to the First Edition xii

Preface to the Second Edition xiii

1. Terminology and Definitions 1
 1.1 Generic and Oilfield Terms 1
 1.2 Definitions and Abbreviations 2

2. Standards Referred to in this Document 7

3. Introduction 9

4. Scope 11

5. Objective 13

6. Overview of Requirements for Selection and Qualification of CRAs for Oil and Gasfield Use 15
 6.1 Introduction 15
 6.2 Resistance to Corrosion by Produced Fluids 15
 6.2.1 Carbon Steels 15
 6.2.2 CRAs 15
 6.2.3 Testing CRAs for General and Localised Corrosion 16
 6.2.4 Testing CRAs for Resistance To Environmental Cracking 17
 6.3 Corrosion Resistance in Other Fluids 17
 6.4 Qualification and Ranking of CRAs 19
 6.5 Quality Assurance (QA), Quality Control (QC) Testing 19

7. General Principles and Limitations of Proposed SSC/SCC Tests 21
 7.1 Background 21
 7.2 Test Environments 21
 7.3 Test Stresses and Loading of Specimens 21
 7.4 Test Specimens 27
 7.5 Test Duration and Strain Rate 28
 7.6 Test Temperature 28
 7.7 Test Materials 29
Contents

A2.2.2 Oil Reservoirs 50
A2.2.3 High Pressure, Gas-Condensate Reservoirs 51
A2.2.4 Surface Production Facilities 51
A2.3 pH of Produced Waters 52
A2.4 Application to Material Testing and Selection 53
A2.5 Water Analysis 53
 A2.5.1 Requirement 53
 A2.5.2 Chloride and Non-Scaling Ions 54
 A2.5.3 Scaling Ions 54
 A2.5.4 Iron (Fe²⁺/Fe³⁺) 54
 A2.5.5 pH Controlling Components 55
 A2.5.6 Total Alkalinity and Bicarbonate (HCO₃⁻) 56
 A2.5.7 Ionic Strength 57
 A2.5.8 Sampling 57
 A2.5.9 Validation and Correction of Analyses 57
References for Appendix 2 58

APPENDIX 3:

Titanium Alloys-Limitations of Use 59
 A3.1 Scope 59
 A3.2 Hydrofluoric Acid and Fluorides 59
 A3.3 Methanol 59
 A3.4 Hydrogen Uptake 59
 Reference for Appendix 3 59

APPENDIX 4:

Reference Environments for Comparative (or Ranking) Testing that is not Application Specific 61
 A4.1 Purpose 61
 A4.2 Solution Chemistry 61
 A4.3 Solution pH 61
 A4.4 Reference Test Environments 61
 A4.5 Test Temperature 62
 Reference for Appendix 4 62

APPENDIX 5:

Normalisation of Slow Strain Rate Test Ductility Measurements 63
 A5.1 Use of Normalised Measurements 63
 A5.2 Normalised Strain to Failure (ε_n) 63
 A5.3 Normalised Reduction in Area (R_{A_n}) 63
Contents

APPENDIX 6:

Auto clave testing of CRAs
A6.1 Scope 65
A6.2 Principles 65
A6.3 Safety 66
A6.4 Test Vessels 66
A6.5 Test Specimens, Loading Grips and Jigs 67
A6.6 Applied Load - Corrections for Pull-Through Auto claves 67
A6.7 Test Solutions 67
A6.8 Test Gases 68
A6.9 Test Monitoring 69
A6.10 Reporting 70

APPENDIX 7:

Stressing of Bent Beam Specimens and C-Rings 71
A7.1 Scope 71
A7.2 Studding, Nuts and Jigs 71
A7.3 Loading: General 72
A7.4 Loading: Bent Beams 72
A7.5 Loading: C-Rings 73
A7.6 Welded Specimens 73
A7.7 Strain Gauging 74
A7.8 Reporting 75
References for Appendix 7 75

SUPPLEMENTARY APPENDIX S1:

Test Methods for the Evaluation of the Corrosion Performance of Steels and Non-Ferrous Alloys in the System:
Water-Hydrogen Sulphide- Elemental Sulphur 77
Editorial Note 77
S1.1 General 78
S1.2 Description of the Test Methods 78
S1.2.1 Environmental Parameters 78
S1.2.2 Test Parameters/Type of Corrosion 80
S1.2.3 Test Procedures 81
S1.3 Evaluation of Results 82
References for Supplementary Appendix S1 82
Preface to the First Edition

This Working Party Report is the companion to EFC 16 Guidelines on Materials Requirements for Carbon and Low Alloy Steels for H₂S-Containing Environments in Oil and Gas Production. These reports have been produced by Work Groups in the Working Party on Corrosion in Oil and Gas Production since it was formed in 1992.

The driving force for the preparation of this report has been the long standing, unsatisfactory inconsistency in testing and qualifying corrosion resistant alloys (CRAs) for H₂S service. The primary problem was considered to be that there was no standard methodology for establishing the environmental cracking resistance of CRAs in H₂S service. Improving this situation became the CRA Work Group’s initial aim.

The report therefore proposes test methods for assessing the environmental cracking resistance of CRAs. In order to document the basis for these proposals, extensive background information has been included along with further information related to the use of CRAs in oil and gas production.

However, to produce the report in a reasonable time it has been necessary to limit its scope. Thus, it has not been possible to include detailed test methods for pitting and crevice corrosion or develop guidance on the service limits of individual CRAs. These important tasks, among others, remain for consideration in future revisions or reports.

The CRA Work Group has been well supported by all sections of the industry that have an interest in the use of CRAs. As chairmen of the EFC Working Party and Work Group that have produced this report, we wish to thank all who have supported the work. This includes sponsorship of Work Group members by employers, provision of meeting facilities by host organisations and contributions from individuals. Unfortunately, the contributors are too numerous to name individually, though NDI’s essential organisational and secretarial sponsorship warrants particular mention. Working with the group, whose membership has been drawn from Europe and beyond, has been very rewarding for us. We hope readers find value in the product of this labour.

Liane Smith
Chairman
European Federation of Corrosion
Working Party on Corrosion in Oil and Gas Production

Bill Nisbet
Chairman
Corrosion Resistant Alloys Work Group of the Working Party

Ed Wade
Past Chairman (1992-1996)
Corrosion Resistant Alloys Work Group of the Working Party
Preface to the Second Edition

The work group consider this revision of EFC 17 necessary to incorporate developments, in the testing of CRAs, made since publication of the first edition in 1995. In particular:

1. Experience with weldable super-martensitic stainless steels has identified that artificially buffered test solutions used for SSC testing require modification for these steels
2. More general improvements in the definition of test solutions have been made in co-operation with ISO/TC 67/WG 7 during the preparation of ISO 15156.

The above have been incorporated as changes to Section 8 and Appendix 4. Elsewhere, minor changes have been made to update and correct editorial errors and omissions in the original text.

In addition to the changes now made to this document, the reader's attention is drawn to:

2. Extensive proposed changes to the CRA content of NACE MR0175 and the intended carry-over of these changes into ISO 15156.
3. Incorporation of SCC testing requirements in the 1996 revision of NACE TM0177 and changes to test solutions now in preparation for the next edition. The latter are expected to be largely consistent with this document.

We wish to acknowledge the essential contributions of Work Group members to this revision and the following who have assisted with the editorial preparation of the revision: J.-L. Crolet, E. Wade, B. Kermani.

As foreseen in the first edition, developments in the testing of CRAs continue. Readers are encouraged to monitor these to ensure their use of best practice.

Phil Jackman
EFC Oil and Gas Chairman

Chris Fowler
Working Party Chairman

Mike Swidzinski
Working Party Chairman